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Local critical behaviour at aperiodic surface extended 
perturbation in the Ising quantum chain 
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Vandouvre 12s Nancy Cedex. France 

Received 16 September 1994 

Abstract. The surface critical behaviour of the semi-infinite one-dimensional quantum king 
model in a transverse field is studied in the presence of an aperiodic surface-extended modulation. 
The perturbed couplings are dishibuted according to a generalized Fredholm sequence, leading 
to a marginal perturbation and varying surface exponents. The surface magnetic exponents are 
calculated exactly, whereas the expression of the surface energy density exponent is conjectured 
from a finite-size scaling study. The system displays surface order at the bulk Critical point, 
above a critical value of the modulation amplitude. It may be considered as a discrete realization 
of the Hilhorst-van Leeuwen model. 

1. Introduction 

The influence of bulk quasipenodic or aperiodic perturbations on the critical properties 
at second-order phase transitions has been an active field of research during ‘recent 
years. Different problems were studied numerically on the two-dimensional Penrose lattice 
including the Ising model (Godrkche et al 1986, Okabe and Niizeki 1988, S~rensen et al 
1991), percolation (Sakamoto etal 1989, Zhang and De’Bell 1993) and the self-avoiding 
walk (Langie and Igl6i 1992). In all these cases, no change in the critical  exponents 
was observed. Universality was also preserved for threedimensional quasiperiodic systems 
(Okabe and Niizeki 1990). On the contrary, a continuously varying roughness exponent 
was obtained for interface roughening in two dimensions with a modulation of the couplings 
following the Fibonacci sequence (Henley and Lipowsky 1987, Garg and Levine 1987). 

The aperiodically layered two-dimensional king model has also been studied extensively 
(Igl6i 1988, Doria and Satija 1988, Benza 1989, Ceccato 1989a,~b, Henkel and Patk6s 1992, 
Lin and Tao 1990, 1992a, b, You etal 1992, Turban and Berche 1993) following earlier 
pioneering works on randomly or arbitrarily layered king systems (McCoy and Wu 1968, 
Au-Yang and McCoy 1974). The problem was mainly treated in the extreme anisotropic 
limit where the constant intralayer interaction KI = J l /ksT  goes to infinity while the 
modulated interlayer interactions &(k) go to zero, keeping fixed the ratio h k  = K*(k) /K; ,  
where K; is related to K I  through duality (Kogut 1979). In this limit, the physics of the 
system is governed by the one-dimensional quantum Ising model (QM) with the Hamiltonian 
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Some exact results have been obtained with Fibonacci, Thue-Morse and other aperiodic 
modulations for which the critical behaviour is universal. In other cases the Onsager 
logarithmic singularity of the specific heat was found to be washed out (Tracy 1988). as 
in the random McCoy-Wu model. The structure of the critical excitation spectrum and the 
related conformal aspects have also been explored (Igl6i 1988, Grimm and Baake 1994). 

The situation was recently clarified through the introduction of a relevanc+irrelevance 
criterion (Luck 1993a, b, Igl6i 1993) generalizing to aperiodic systems the Harris criterion 
for random systems (Harris 1974). The cumulated deviation from the average coupling 1, 
A(L)  = CL=, (& - 3, scales with the chain length L as 6Lu where 6 is the amplitude 
of the modulation and o is the wandering exponent of the aperiodic sequence related to 
the leading eigenvalues of its substitution matrix (Queffelec 1987, Dumont 1990). Under a 
change of the length scale by a factor b = L/L', the average thermal perturbation A ( L ) / L  
is multiplied by bll", where U is the bulk correlation length exponent, and the amplitude 
transforms as 

6' = b""6 0 = 1 + U(W - 1). (1.2) 

The relevance of the aperiodic perturbation depends on the sign of the crossover exponent 
@. In the two-dimensional king model with U = 1 the modulation is irrelevant when w c 0, 
i.e. for the much studied Fibonacci and Thue-Morse sequences, marginal when o = 0 and 
relevant when o z 0. One expects varying exponents in the marginal case and a new type 
of critical behaviour in the relevant case. 

The three types of critical behaviour were indeed obtained in recent exact calculations 
of the surface magnetization of the QIM (Turban, Igl6i and Berche 1994, Igl6i and Turban 
1994, Turban, Berche and Berche 1994). 

In the present work, we study surface aperiodic perturbations generated through the 
Fredholm sequence (Dekking er a1 1983) and its generalizations. Such sequences lead to a 
vanishing density of defects in the bulk of the system and the bulk critical properties are 
left unchanged. On the other hand, they induce a marginal surface extended perturbation so 
that the surface critical exponents are non-universal, varying with the modulation amplitude. 
Such aperiodic perturbations may be considered as discrete realizations of the Hilhorst-van 
Leeuwen model (Hiihorst and van Leeuwen 1981; see also Igl6i, Peschel and Turban 1993, 
for a recent review). 

The properties of the generalized Fredholm sequence are studied in section 2. The 
surface magnetization is calculated exactly in section 3 and the surface energy exponent 
is obtained through finite-size scaling in section 4. The results are discussed in the last 
section. 

2. Generalized Fredholm sequence 

We consider a generalized Fredholm sequence generated through substitution with the three 
letters A, B and C 

A - + S ( A ) = A B C C  ... C 

B + S ( B ) = B C C C  ... C 
C - + S ( C ) = ~ C C C  ... q 

m 
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which is the characteristic sequence of the powers of m. With words of length m = 2, one 
recovers the usual Fredholm sequence (Dekking et al 1983). 

The substitution matrix M, with entries giving the numbers of A, B and C in S(A), 
S(B) and S(C), then reads 

1 
M = (  1 :) (2.2) 

m - 2  m - 1  m 
with eigenvalues Q1 = m and Q2.3 = 1. The wandering exponent is given by 

(2.3) 

so that, according to equation (1.2), the Fredholm modulation is a marginal perturbation for 
the QIM. The numbers of letters of each type at the nth step in the inflation process are given 
by the matrix elements of M". The asymptotic letter densities PA, p~ and pc are related to 
the components of the right eigenvector associated with the largest eigenvalue 0 1  with 

independent of m. 
In the following, the couplings in the Hamiltonian (1.1). which are distributed according 

to the aperiodic sequence, will be written as hk = Arf* where A is the unperturbed (bulk) 
interaction and r characterizes the modulation. We associate an unperturbed coupling A, 
i.e. fk = 0, to the letters A or C and a perturbed coupling hr, fk = 1, to B. For example, 
starting on A with m = 2, one obtains the following sequences after n iterations: 
n = O  A 
n = l  A B 
n = 2  A B B C 
n = 3  A B B C B C C C  
n = 4  A B B C B C C C B C C C C C C  C 

Equation (2.1) leads to the following relations for the f k s :  

p*=o  p B = o  p c = 1  (2.4) 

(2.5) 

fk 0 1 1  0 1 0 0 0  1 0 0 0 0 0 0  0; 

f W + l  = f,+l 
fmp+z = 0 ( P  > 0) fz = 1 (2.6) 

fmP* = 0 
They can be used to deduce similar recursion relations for the number of perturbed couplings 
nj = xi=, fk in a sequence with length j ,  which are obtained by splitting the sum over k 
into m sums over p ,  giving 

(q = 3,4, . . . , m) . 

n,r+l = nr+l + 1 
(2.7) 

= nl+l + 1 
Iterating these relations, one may check that f k  = 1 when k = m' + 1 (I = 0, 1.2, . . .). For 
a sequence with length L = m', 

(1 =. 0) 

(q = 2,3,. . . , m) . 
nl = 0 

1nL 
In m 

n L = . l = -  

and the asymptotic density of defects satisfies 
nr. p- = lim - = p~ = 0 

L+m L - 
i.e. the generalized Fredholm modulation introduces an extended surface perturbation in the 
system. 
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3. Surface magnetization 

The surface magnetization m, follows from the asymptotic behaviour of the surface spin- 
spin correlation function, limt-,m(o~(0)o;(t)), which gives the square of this quantity on 
a semi-infinite system. Writing the correlation function in the basis which diagonalizes the 
Hamiltonian in (LI), ms can be expressed as the matrix element (olaXIO), where 10) is the 
ground state and lo) the first excited state of ‘H (Schultz et nl 1964). These two states 
become degenerate in the ordered phase h > he as a consequence of long-range order. 

The Hamiltonian can be put in diagonal form (Lieb et al 1961) 

using the Jordan-Wigner transformation (Jordan and Wigner 1928) followed by a canonical 
transformation to the diagonal fermion operators qv. The fermion excitation spectrum is 
obtained as the solution of the eigenvalue problem 

where &(k) and +Jk) are the components of two normalized eigenvectors which satisfy 
the boundary conditions &(O) = +.,(O) = 0. 

Rewriting ox in terms of diagonal fermions with 10) = q i l O ) ,  it can be shown that m, 
is also given by the first component @1(1) of the eigenvector corresponding to the smallest 
excitation. According to the first equation in (3.2), in the ordered phase where €1 vanishes, 
other components of the eigenvector follow from the recursion relation 

@ i ( k  + 1) = -A.k’$i(k).  (3.3) 

The normalization of the eigenvector then leads to the surface magnetization (Peschel 1984) 

For the aperiodic system, with A t  = hrfi ,  this leads to 

The critical coupling h, generally follows from (Pfeuty 1979): 

Here, hc = r - h  = 1 keeps its unperturbed value, as expected for an extended surface 
perturbation. 

In order to calculate the sum in (3.5) let us rewrite it as 
m 

S(h,  r )  = 1 + A-’ + T(h ,  r )  T(h,  r )  = Ch-’jr-*’J . (3.7) 
j=Z 
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The second sum can be split into m parts as 

T ( A ,  r) = Cp(ml+l)r--2nmi+~ + C~-2(ml+Z)~-%t+z + . . . + C ~ - Z ( m f + m ) ~ - 2 ~ + ~  
m m m 

1=1 I* I d  

and, using (2.7), the following functional equation is obtained: 

r-2 
AZ - 1 

T(A,  r) = - [A-' -A-" + (Ak - l)T(Am, r)] . (3.?) 

This can be iterated to give 

(3.10) 

The critical behaviour can be extracted, applying a finite-size scaling method due to 
Igl6i. Assuming that the surface magnetization displays a power-law singularity with a 
critical exponent Bs, S(A, r) behaves as t-'A with t = A;' - A-', near the critical point 
A, = 1. It can be shown (Igl6i 1986) that the sum SL of the first L terms in a power series 
expansion in A-' scales asymptotically like L20* at the critical poinr One can easily verify 
that the term 1 = n of the sum in (3.10) contains the powers of A-' from m" + 1 to m"+'. 
Cutting the sum at n - 1, one collects the contribution to the first L = m" terms of the 
series expansion and, using (3.7), 

(3.11) 

TWO regimes have then to be considered when r < r, = fi, 
whereas it is 0(1) when r > r,. It follows that 

behaves as (mr-')" 

(3.12) 
o S = O  r > r c .  

When r < r, the surface transition is second order as shown in figures 1 and 2. The 
exponent ,Ss depends on the modulation amplitude, as expected with a marginal perturbation. 
This dependence is shown in figure 3. 'The exponent goes to zero linearly at r, as 
(rc - r)/(2rc1nrc). 

The vanishing of pS for r > r, signals the occurence of surface order at the bulk critical 
point. Since the surface is one-dimensional in the corresponding layered two-dimensional 
classical system, it cannot stay ordered when the bulk disorders and the surface tmnsition 
is first order in this regime as shown in figures 1 and 2. The existence of surface order at 
A, and above is linked to the localization of the eigenvector 61. It remains normalizable 
even at the critical point when r > r,. 

The value of the critical surface magnetization ms,c follows from (3.5) taking the limit 
n + CO in (3.11), which gives 

(3.13) 
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The behaviour of ms,c is shown in figure 4. It vanishes with a square-root singularity at r,. 
The approach to the critical surface magnetization above r, involves another surface 

exponent pi such that ms - ms,c - t p i .  It may be calculated, using the same method as 
above, by considering the series expansion 4 ( 1 ,  r )  = &(1, r )  - [m,,c]-2, with L = m", 
which scales like L-8:. One obtains 

(3.14) 

The exponent pi, shown in figure 3, vanishes linearly at r, as (r - rc)/(rclnr,). 

expansion gives 
At the critical value of the modulation amplitude, according to (3.11), the finite series 

Figure 1. Spontaneous surface magnetization 
m, of the king quantum chain with the m = 2 
Fredholm aperiodic modulation 3s a function 
of the square of L e  reduced coupling ?.,/A for 
different values of the coupling ratio r.  The 
surface transition is firstiorder when r > rc = 
4. 

Figure 2. Spontaneous surface magnetization 
m, of the Ising quantum chain with them = 3 
Fredhoim aperiodic modulation as a function 
of the square of the reduced coupling X ,  p for 
different values of the coupling ratio 1. The 
surface transition is first-order when r > r, = 
J5. 

in-1 
m 

SL=.( 1, rc) = 2 + - II - In L (3.15) 
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Figure 3. Ising surface magnetic exponents 
8. and 8: versus reduced coupling ratio r / rc  
for  the^ generalized Fredholm sequence with 
m = 2, 3. 4. The exponent 8: is assodated 
with the approach towards the critical surface 
magnetization when r > rc. 
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Figure 4. Variation of the critical stuface 
magnetization ms,s with the reduced cou- 
pling ratio r/rc for the,genenlized Fredholm 

1 1.2 1.4 I .6 1.8 2 sequence with m = 2, 3, 4 from top to bot- 
0 

rlrc tom. 

so that the surface magnetization vanishes there with a logarithmic singularity 

ms(rc) - (- In t)-'/' . (3.16) 

The variation of ms(rc) with A? is shown in figures 1 and 2. 

4. Surface energy 

The critical behaviour of the surface energy can be studied by considering the finite-size 
behaviour of the matrix element e. = ( E I o ~ I O )  which does not contain any regular part and 
scales like L-"$ where x ,  is the dimension of the surface energy density. Here, the state 
[ E )  is the lowest two-fermion eigenstate qTqll0) of the Hamiltonian (3.1). Writing U; in 
terms of diagonal fermions, one obtains 

es = IltCWd1) - @i(1)@22(1) = (€2 - d@1(1)hZ(1) (4.1) 
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where, in the last expression, we used the relation qV(l) = -E" @,,(I), which follows from 
the second equation in (3.2) for the surface components of the eigenvectors. 

The matrix element e, on finite systems with size L of the form mn was obtained through 
a numerical solution of the eigenvalue problem 

hk-l@dk - 1) + (hi-, + I)@&) + hk@"(k + 1) = E : @ m  
4d1) +hl@"(2) =€,2@"(1) 

(4.21 
@ J L +  1) =o .  

For small chains (L < Z L 5  or 39), the complete excitation matrix was diagonalized while 
for longer chains (up to L = 217 or 3 9 ,  equation (4.2) was rewritten as a matrix recursion 
relation 

and varying E , ,  we looked for the zeros of @&+ l), with @,(O) = 0 and @,(1) arbitrary in 
the first vector. Once the zeros corresponding to the two lowest eigenvalues are found, the 
corresponding eigenvectors are normalized in order to evaluate (4.1). The exponent xes is 
then deduced from the slope at large L in a log-log plot. The results are shown in figures 5 
and 6. 

The behaviour of x., below r, can be deduced from finitesize scaling considerations. 
Low-energy excitations scale as L-' and due to the factor E,, the LHS of the first equation 
in (3.2) can be neglected. The leading finitesize behaviours of @1(1) and @2(1) are the 
same and follow from (3.4) by cutting the sum at j = L. The calculation proceeds as for 
BS and gives &(1) - @2(1) - L-'- with x,, = = 4 - Inr/Inm. As a by-product, we 
recover v = ps/xm, = 1 for the bulk correlation-length exponent. as expected for a surface 
perturbation. Collecting these results in (4.1), we obtain 

In r 
lnm e,(L) - x e , = 2 - 2 -  r < r c .  (4.4) 

2.5 

2 

YI 

x" 
I .5 

1 

m = 2  

Figure 5. Surface energy density exponent 
as a function of the coupling ratio r for the 
Fredholm sequence with m = 2. The points 
carrespond to finite-size scaling results on 
chains with sizes of the form 2" up to 
L = 2". 2''. 2" from toD to bouom. The , .  

0.8 1.2 1.6 2 2.4 2.8 thick curve gives the conjectured analytical 
r result. 
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A Firmre 6. Surface enerm densiw emonenr 

The poinls wmspond to finite-size scaling 
results on chains with sizes ofthe form 3 O  "11 
to G = 31. 3'. 3' from top U) bottom. The 

. _  - -  ! thick curve gives the Conjectured aoalvtical 
3 result. I I .3 2 2.3 

When r z r, one finds different size dependences for the first and second excitations as well 
as for the corresponding components of the eigenvector. Due to surface ordering, the first 
excitation vanishes anomalously as L-2'0r'1nm, i.e. quicker than the higher ones with the 
usual L-l behaviour. Equation (3.3) can still be used to calculate the size dependence of 
&(1) which, following the same steps as in the last section, gives m,(L) = const + L-&, 
where xhz = pi. The term on the LHS in (3.2) can no longer be neglected for @2(1). The 
size-dependence L'/Z-l"'/'nm was obtained numerically. Together, this gives 

One may notice that the anomalous behaviour of the first excitation is in agreement with a 
scaling theory for first-order line transitions involving an irrelevant variable and leading to a 
L'-bcs size dependence (Iglbi and Turban 1993). Numerical results for the surface exponent 
xe, in figures 5 and 6, converge smoothly with increasing size towards the conjectured 
analytic expressions. 

5. Discussion 

As already mentioned in the introduction, the aperiodic surface extended perturbation treated 
here, displays some similarities with the Hilhorst-van Leeuwen model (Hilhorst and van 
Leeuwen 1981) in which the coupling, at a distance k from a free surface, takes the form 

Ar = A (1 + ;) (5.1) 

For the king model in 1 + 1 dimensions, the marginal case corresponds to a decay exponent 
y = 1. The critical surface order appears at ac = f and the surface critical exponents have 
the following dependence on the perturbation amplitude: 
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A comparison with previous results in (3.12). (3.141, (4.4) and (4.5) shows that theexponents 
of the aperiodic system are recovered through the following correspondence: 

In r 
In m 

U"- (5.3) 

In the Hilhorst-van Leeuwen model, the integrated relative perturbation at a distance L is 
given by 

On average, the same logarithmic dependence is found with the aperiodic perturbation for 
which, on a chain with length L = m" according to (2.Q the corresponding quantity is 

r - 1  
In m 

- ( r -  1) n~ = - InL. 
k=l 

This would suggest the identification DI = (r - 1)/Inm which, actually, is only valid 
up to the first order in r - 1, i.e. for a weak modulation. The fluctuations around the 
average logarithmic behaviour modify this expression for a stronger perturbation. The 
correct identification can be obtained by considering the finite-size behaviour of the critical 
coupling which follows from (3.6) with 

nL lnr  InL __ - 
L lnm L In[h,(L)] = - Inr  - 

for the aperiodic system, whereas 

l L  1nL 
In [A&)] = -L Eh (1 + E) zz -U - k L k=l 

(5.6) 

(5.7) 

in the Hilhors-van Leeuwen model. 
To conclude, one may notice that an experimental realization of the Hilhorst-van 

Leeuwen model with its I /kY decay of the couplings appears difficult while its aperiodic 
counterpart, studied here in the marginal case, could be more easily obtained (at least in 
three dimensions) using appropriate sequences in multi-layer systems. 
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